
Following some a lgebra ,  Eq. (2) takes  the f o r m  

<w> ~ {k~ + 2 k ~  + ~k~.~)/= 6 (3) 

The expres s ion  within b r a c e s  in Eqs.  (8) and (9) d i f fers  f r o m  the complete  square  ef  k~ 3 by the p r e s -  
ence of a co r re l a t ion  between fluctuations of the e las t ic  constants  at different points of the body. 

Thus,  the G r i f f i t h - I r w i n  c r a c k  c r i t e r ion  is descr ibed  by Eq. (9) for  a longitudinal c r ack  in a randomly 
he terogeneous  body, i .e. ,  the c r a c k  begins to grow at the point when the function of the local c h a r a c t e r i s t i c s  
occu r r ing  within the b r a c e s  r eaches  a value G. 
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T H E R M O M E C H A N I C A L  B E H A V I O R  O F  A R E C T A N G U L A R  

V I S C O E L A S T I C  P R I S M  E X P O S E D  T O  R E P E A T E D  

S T R E T C H I N G  A N D  C O N T R A C T I O N  

V .  G .  K a r n a u k h o v  a n d  I .  K.  S e n c h e n k o v  UDC 678.06 : 621-567:620.175.22 

Vibra t ional  heat product ion is an impor tant  p rob lem in studying the ef f ic iency of v i scoe las t i c  
e l emen t s  of s t r uc tu r e s  exper ienc ing  cycl ic  loads. The design of heat r e g i m e s  const i tu tes  one 
of the fundamental  p r o b l e m s  in the construct ion of such types  of v ib ra t i ona l -p roo f  s y s t e m s  as 
lami,aated rods ,  p la tes ,  and shel ls  [1] and f iberg lass  and r u b b e r - m e t a l  products ,  in pa r t i cu la r ,  
shock a b s o r b e r s  [2, 3]. Calculation of the c r i t i ca l  p a r a m e t e r s  beyond which a rapid growth in 
t e m p e r a t u r e  occurs  (the phenomenon of t h e r m a l  explosion),  which leads to pa r t i a l  o r  complete  
loss  of the support ing power  of the product  as a resu l t  of softening of the ma te r i a l ,  is of p a r -  
t i cu la r  in te res t .  A var ia t iona l  method has been used [4] to calculate  heat production in a two-  
d imensional  shock a b s o r b e r .  The boundary conditions are  sa t is f ied on the bas i s  of the St. 
Venant pr inciple .  In the cu r r en t  work,  the s i r e s  s -  s t ra in  state,  se l f -he  ating t e m p e r a t u r e  field, 
and t h e r m a l  instabi l i ty  of a long r ec t angu la r  p r i s m  being per iod ica l ly  loaded (plane d e f o r m a -  
tion) are  invest igated.  

w 1. The fundamen ta i t he rmoe la s t i c  equations are p resen ted  in [5]. We may obtain the fundamental  
t h e r m o v i s c o e l a s t i c  equations when v =const  by replac ing  the shea r  modulus g by an ope ra to r  ~ * .  We will 
find the solution of these  equations for  a plate [ ~ I -<2L, 17 I -<2H under  the boundary conditions 
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u:~=O, uu=-t-La(t)wher~ Y==t=Yo; (1.1) 
~x=0~ ( r~=0 when x==]=l, 

where  x = ~ / L  and y = ~ / L  are d imens ion less  coordinates  and Y0=H/L. 

The solution of the t r ans l a t iona l  equi l ibr ium equations,  with sufficient functional a r b i t r a r i n e s s  in 
o r d e r  to sa t i s fy  the boundary condi t ions (1.1), has the f o r m  

j = l  

-03' 

L n ~ l  j ~ i  L \ : i 

where  T0, Aj, Cj, Bn, and D n are unlmowncoeff ic ients ;  kn= (2n-1Dr/2Y0, and ?~j =:r  i. We obtain the equations 
fo r  the s t r e s s e d  a f t e r  subst i tut ing the mot ions  (1.2) in the equations of s ta te .  W e ' s a t i s f y  the boundary con-  
dit ions,  as was done in [6], a r r i v ing  at an infinite s y s t e m  of a lgebra ic  equations 

w h e r e  

 [k2 
tnXn -~- n y~ ~ 2  

-1 
1-- v [ 4va(t). 

k r~ -F ~ yok,~ 

l--v ] 
.--2 - -  V2 ' k n ~ ~.j 

(1.3) 

(" ) t n - -  4k n ~ - { -  cthk n ; 

_~_ ~ . 4 ~  th ~,y ~ yo 
s j ~ - - - [ .  , ch 2--~j~o ] . 

It has been p roved  [7, 8] that  s y s t e m s  of the f o r m  (1.3) are  en t i re ly  r egu l a r  and that the pr incipal  pa r t s  of 
the asympto t ic  expansions  for  x n and yj (for la rge  n and j) can be r ep re sen t ed  in the f o r m  

bo. do 
= y j  = ( 1 . 4 )  

where b0, do, and ot are  cons tants ,  while ot is a posi t ive root of the t ranscendenta l  equation 

~ 2 (1 2~) ~ (3 - -  4~) cos ~ -  = ~ - -  --  

We note that the following inequali ty holds for  o~ when 0 <- v-< 0.5: 

0.5 < a ~ 1. (1.5) 

If  we es t ab l i sh  the asympto t ic  behav ior  of  the unknowns x n and yj and make the following substi tution in 
Eqs.  (1.3): 

we will be able to not iceably  improve  the method of s imple  reduction.  In cont ras t  to the method of s imple  
reduction,  the improved  method of reduct ion will allow us to de te rmine  the values  of all  the unknowns x n 
and yj by solving a s y s t e m  of p + q  equations.  The solution of the finite s y s t e m  will be signif icantly fac i l i -  
ta ted  if we are  able to use the method of success ive  approximat ions .  Modern compute r s  allow us to eas i ly  
solve a s y s t e m  of s e v e r a l  hundred equations by means  of this  method.  

A complete  analys is  of the s t r e s s - s t r a i n  s tate  at any point of a body, including a co rne r ,  can be c o m -  
ple te ly  analyzed on the bas i s  of the asymptot ic  equations (1.4). A detai led analysis  of the behavior  of the 
s t r e s s e s  as a c o r n e r  is approached,  will be c a r r i e d  out only for  the components  Cry, since the behavior  of 
the o ther  components  is analogously invest igated.  We have 

= J *  ~ : 2 ( i - - v ) ~ o - - T  ~-~ ( -  l)~x~ 
Uy ~ o  n :  : 1  
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�9 oa 

r shkz  k~(cthk~ i ~chax ] V. j~l(__ i)Jy i 

ch kiy sh ~fl / 
X{[L,YothL,y o + 2(I -- v ) ] ~ o  X , y ~ / c o s  Xix. (1.6) 

Here J is an opera to r  inverse  to V*, ~t 0 is the instantaneous shear  modulus, and 

a (t) 
- - o  co 

2(1--2~)Y~ 2 n=l 

The s e r i e s  in Eq. (1.6) rapidly converge within the region [ x I < 1, ] y [ < Y0 so that we obtain, as in the case 

Y =Y0, 
. COS ~,jx 

o (1 .7 )  

Bear ing  in mind inequali ty (1.5), we see that re l iable  numer ica l  values of the sums (1.7) can be obtained 
only a f te r  we have improved the convergence of these  se r ies  [9]. The use of well-known expansions [10] 
resu l t s  in a computat ional  var iant  of Eq. (1.6) when y =Y0: 

% = 2 ( t - - V ) 7 o +  (l-~)v~176 (--t)J y~-- ;~ 2 ~ ~ U ~  
j = l  

w h e r e  

F(~)-- ( l - z )  ~-i  V-h 

2~r(~)cos~ 2 ~+' r (~  + + )  cos~- 
+ ~ ( X__~l)i = / ~ '  a__~ (X,) ~.~ cos ~ cos gtx. (1.8, 

The inequality 

�9 cos Xf t 

where g is the specif ied computational precis ion of the s t r e s se s ,  will se rve  as the c r i t e r ion  for selecting 
q and N. In this case the boundary conditions (1.1) are  sat isf ied with the same accuracy.  As x - -1 ,  Eqs. 
(1.8) imply that 

* ( I  - -  v )  7oYodo (1 __ x),_1 (1.9) 
O y  ~ 

4r (a) cos ~a 
2 

The remaining s t r e s s  t enso r  components behave in a s imi la r  way as a c o r n e r  is approached. Thus, s t r e s ses  
in the plate ne a r  the point separat ing the boundary conditions have the same singular i ty  as inthe problem 
for  a qua r t e r -p lane  [11]. The resul t ing solution is suitable for  the analysis of p l ane - s t r e s s  and p lane-s t ra in  
s ta tes ,  with our  notation. 

w 2. The dis sipation function and energy  equation are analogously de termined [6] in the case of cyclic 
loading a(t) =a 0 cos oJt. If weaverage  the equations with respec t  to a cycle and adjoin to it the initial and 
boundary  conditions, we ar r ive  at 

o0 = • i o--T + -~  DI' (2.1) 

0o 0-~- + hi (0 -- 0o) = 0 when ~ -- + L; 

O0 +h2(0__0o ) = 0  when TI= + H ,  ~'~'_ 
(2.2) 

where 

r ~ (GO2 02 02 o" __ ~ O02). D I =  @~ + %  + %  +2oxv t + v  )' 
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u = k / e p  is t h e r m a l  diffusivi ty,  c is heat capaci ty ,  p is density,  A is the t h e r m a l  equivalent  of mechanica l  
work,  y is that  pa r t  of the sca t t e r ing  ene rgy  that  becomes  t h e r m a l  ene rgy  [12], h i is the h e a t - t r a n s f e r  co-  
eff ic ient ,  and ~ a re  the s t r e s s e s ,  equal  to the e l a s t i c  s t r e s s e s  when # = #l.  

Equation (1.9) d e m o n s t r a t e s  that  the diss ipat ion function has a s ingular i ty  at a c o r n e r  of the f o r m  

Dz--~ D0[(l - -  x)2+(y0 - -  y)2]t-~ when x - ~  i ,  y--~- Y0. (2.3) 

We m a y  prove  that  t e m p e r a t u r e  is finite when h ~ + h ~ 0  at all  points of  the region by using methods f r o m  
potent ia l  theory  and taking into account Eq. (1.5). Well-known numer i ca l  methods m a y  be used to solved 
the p r o b l e m  (2.1), (2.2).  It is n e c e s s a r y  to rep lace  values  of the function D 1 by its mean  in tegra l  value ca l -  
cula ted  using Eq. (2.3) within a suff icient ly sma l l  neighborhood of the c o r n e r .  This  "smoothing"  of the 
source  function will  not lead to significant e r r o r  in most  p rac t i ca l  calcula t ions .  Such a solution may  be 
obtained by the solution superpos i t ion  method [9]. 

The level  of heat ing will be such that  the t e m p e r a t u r e  dependence of the phys ieomechanica l  p r o p e r -  
t i e s  can be d i s r ega rded  within a suff icient ly wide range of  load p a r a m e t e r s .  Here  the se l f -hea t ing  t e m p e r a -  
tu re  field is de te rmined  by solving the l inear  s y s t e m  (2.1),(2.2).  

w 3. D i s r e g a r d i n g i n t h e  ene rgy  equat ionthe dependence of the p r o p e r t i e s  of  the m a t e r i a l  on t e m p e r a -  
tu re  will  not give a c o r r e c t  quanti tat ive and quali tat ive descr ip t ion  of v ibra t iona l  heating in the case  of in- 
t ens ive  loading. We thus a s sume  that  

~=~o~O[~(O - -  0o) 1 (3.1) 

for  the solut ions (2.1)-(2.2), a r r iv ing  at the p rob l em 

3u+X/(z, y)r 
~ + B~u = 0 when X = + t ;  dx --  

0~-~ _ B2u = 0 when y = _.'a- Yo, 

(3.2) 

where  e~ is  a given function, /3 and P02 are  expe r imen ta l  constants ,  and 

x = y = u - -  CO - 0o) ,  = L h l ,  B .  = L h 2 ,  ( 3 . 3 )  

i [ o ~ -  o 2 -  02 oz ._3_v ~o~  = (~176 / (x, y) = ~ / o x  + % -t- az + 2 ~  - -  1 + ~ J 
k ' a ~ l a  0 ,~ 

are  d imens ion less  v a r i a b l e s .  The boundary conditions (3.3) will be hencefor th  wri t ten in the more  genera l  
f o r m  

~ -}- Bh  (x, y) u = 0 on S. (3.4) 
8n 

The p rob l em (3.2), (3.4) is also encountered  in studying the t e m p e r a t u r e  fields of v iscous  liquids, gases ,  
and gas  mix tu res  [13], in the e l ec t r i c a l  heating of conductors  and e l ec t ro ly te s  [14], in calculat ing in ternal  
heat ing of i cebergs  [15], and o ther  f ields.  

Cr i t i ca l  va lues  k .  of the p a r a m e t e r  k above which no posi t ive solutions of  the nonl inear  s y s t e m  (3.2), 
(3.4) exis t  a re  of  g r ea t e s t  in te res t .  Cr i t i ca l  values  in a number  of one-d imens iona l  p rob l ems  for  actual  
functions �9 have been calcula ted  [1, 2, 16, 17]. A su rvey  of the ma themat i ca l  aspects  of th is  p rob lem has 
also been given [18]. In mos t  s tudies it has been a s sumed  that a t r i v i a l  solution u 0 is known, which is equiv- 
alent to ~(u 0) =0. This  condition is not sa t i s f ied  for  heat sources  opera t ing  in v i scoe las t i c  media .  

We m a y  prove  that if the function u/~(u) is bounded, 

~,  < :~o, (3.5) 

where  X0 is the min imal  eigenvalue of the assoc ia ted  l inear  p rob lem 

A U - ~ X ] ( X  , y ) v = 0  in V; (3 .6)  
9v a--~-q-Bh(x,y) v ~ - O  on S. 
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Under these constraints  an equation has been obtained [14] for the upper bounds ~ of h , ,  

l,-~<~, = xomax ~ -. (3.7) 
~>o �9 (u) 

The Inequality (3.7) provides an ex t remely  good approximation for h , ,  par t icu lar ly  at low B. Nonetheless ,  
the method of obtaining this equation does not allow us to construct  approximations of higher o rders .  

We will write Eq. (3.1) in the form 

5 u +  T J u = / [ z u  - ~q)(u) ] 
and solve the initial sys tem by the method of success ive  approximations.  As a result ,  we ar r ive  at the 
line ar  boundary-value problem 

Auo-FXfUo=O in V; 

o,___~ + Bhuo = 0 on S; on 

(3.s) 
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0t in ,  
an t-Bhun=O on S. 

(3.9) 

The bounds (3.5) and {3.7) indicate the need for  set t ing X --X0- The solution {3.8) is wri t ten in the f o r m  

uo=Cvo, (3.10) 

where  v 0 is the o r thonormal i zed  eigenfunction (3.8) cor responding  to • = • We substi tute Eq. (3.10) in 
(3.9) for  n = l ,  obtaining, f r o m  the exis tence  condition for  the solution of the p rob lem,  

xo c (3.11) 
k~ = .[ /0  (Cvo) vodV " 

V 

Since C is an a r b i t r a r y  constant ,  we eas i ly  prove  that  we may  requi re ,  without loss  of general i ty ,  that the 
following conditions are  sat isf ied:  

! ]u~,vodV---- O ( n =  i ,  2 . . . .  ). 
V 

Then the solutions of the s y s t e m  (3.9) can be r e p r e s e n t e d  in the f o r m  

ul = Cvo + Zj -- X--------~ vj aj = .  [Xou0 --  ~ogP (uo)l vjdg . . . .  
"~ V 

where ~i and v i a re  the e ignnvalues  and eigenfunctions of the p rob lem.  As a resu l t  the exis tence conditions 
fo r  the s'olutio~is of  the p r o b l e m  (3.9) lead to the sequence 

~n-,  = Zo ~ /u,~- 'vodV]f lr  (3.12) 
"v 

;~n(C)-.-MC) as n--~o. 

Thus, the construction of the dependence k(C) reduces in each approximation to the calculation of quad- 
ratures in Eqs. (3.11) and (3.12). A different choice of X can be made if the ratio u/@(u) is unbounded. For 
example, if there exists a number u0, such that @{u 0) =0, it is necessary to replace • by Xj 0 =I, 2 .... ) in 
the equations presented above, i.e., every eignnvalue of the problem (3.6) is a point of bi~reation of the sys- 
tem (3.2), (3.4). In analyzing the dependence k(C), we are able to determine the critical values k. and in- 
vestigate the behavior of a bifurcation of the solutions of the nonlinear problem. The eigenvalues and eigen- 
functions of the linear function can be found on the basis of well-known methods [9]. 

w 4. A numerical calculationwas carried out for L =0.05 m, Y0 =0.88, and v = 0.5. The infinite system 
was held to I00 unknowns x n and yj. In using the method of successive approximations, the first six signs 
of the unknowns were interchanged after 10-12 iterations. The resulting solution satisfied the boundary 
conditions to four significant digits. The convergence of the series was improved using the Krylov method 

[9] for calculating stresses on boundary surfaces. 

Figures I and 2 depict the distributions of the normal and tangential stresses to the plate. We may 
see that a nearly homogeneous stressed state occurs only in the central part of the body. The singularity 
results in a sharp increase in stresses as the corner is approached. The dissipation function behaves anal- 
ogously in this region. Values of f calculated using Eq. (3.3) are depicted in Fig. 3. In order to determine 
the temperature the problem (2.1), (2.2) was solved by the method of finite differences with variable pitch 
for h i =40 m -I and h 2 =5240 m -I. With these remarks in mind, the mean integral value of f was calculated 
in an angular grid 0.02L �9 0.02Ly 0 using Eq. (2.3). Figure 4 depicts a stationary temperature field cal- 

culated to within the fac tor  r =~o p2~/a 2 L2A/k. 

Under these  conditions the influence of a f r inge effect  on t e m p e r a t u r e  is not p rac t i ca l ly  exer ted  and 
t e m p e r a t u r e  r eaches  a m a x i m u m  at the cen t ra l  point of approach.  The eigenvalues  and eigenfunctions X- 
and vj of the l inear  p rob l em  (3.6) were  de te rmined  by the Bubnov method in the course  of studying thermJal 
instaSil i ty.  The approximate  solutions a re  r e p r e s e n t e d  in the f o r m  

v} ") = ~ ~ bn~cos~.~xcosk,~g, (4.1) 
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where k mandknare roots of transcendental equations obtained from the boundary conditions (3.2). The 
function f(x, y) was pointwise approximated using the method of least squares with sums of the form (4.1). 
As a result,  we obtained the following approximations X~ s) of ){0: • 1) =1.0095, • (2) =0.99605, and X0(3) = 
0.99557, which gives us grounds for setting )/o=0.9956. 

For a broad class of viscoelastic materials  [17l, r =exp(u) in Eq. (3.1). The curve for k(C) obtained 
for this dependence is depicted in Fig. 5. Curves 1 and 2 were obtained using Eqs. (3.7) and (3.1t), r e -  
spectively. Both equations satisfactorily agree in maxima of k and significantly diverge in the amplitudes 
of C. The dependence k(C) is a branching equation for the nonlinear problem (3.2), (3.3) and demonstrates 
that there exist two solutions when ~ <k . ,  one solution when X = k , ,  and no solution when k >k, . When 
k >~, the temperature growth is unbounded (thermal explosion). 
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