Following some algebra, Eq. (2) takes the form

S<W> i1 2 SIS S
=5 —_—W{kg - 2hghs - (haky)) = G. 9

The expression within braces in Egs. (8) and (9) differs fromthe complete square of k'; by the pres-
ence of a correlation between fluctuations of the elastic constants at different points of the body.

Thus, the Griffith—Irwin crack criterion is described by Eq, (9) for a longitudinal crack in a randomly
heterogeneous body, i.e., the crack begins to grow at the point when the function of the local characteristics
occurring within the braces reaches a value G.
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THERMOMECHANICAL BEHAVIOR OF A RECTANGULAR
VISCOELASTIC PRISM EXPOSED TO REPEATED
STRETCHING AND CONTRACTION

V. G. Karnaukhov and I. K. Senchenkov UDC 678.06:621-567:620,175,22

Vibrational heat production is an important problem in studying the efficiency of viscoelastic
elements of structures experiencing cyclic loads, The design of heat regimes constitutes one
of the fundamental problems in the construction of such fypes of vibrational-proof systems as
laminated rods, plates, and shells [1] and fiberglass and rubber—metal products, in particular,
shock sbsorbers [2, 3]. Calculation of the critical parameters beyond which a rapid growth in
temperature occurs {the phenomenon of thermal explosion), which leads to partial or complete
loss of the supporting power of the product as a result of soffening of the material, is of par-
ticular interest. A variational method has been used {4} to calculate heat production in a two-
dimensional shock absorber. The boundary conditions are satisfied on the basis of the St,
Venant principle. In the current work, the stress—strain state, self-heating temperature field,
and thermal instability of a long rectangular prism being periodically loaded (plane deforma-~
tion) are investigated.

§ 1. Thefundamentalthermoelastic equations are presented in [5], We may obtain the fundamental
thermoviscoelastic equations when v =const by replacing the shear modulus uby an operator u*, We will
find the solution of these equations for a plate |&| =21, |n| =2H under the boundary conditions
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=0, uy,==xLa(f)when y=zyo; (1.1)
6,=0; o'xy=0 when z=4-1,

where x=£/1 and y=n/L are dimensionless coordinates and yO=H/L.

The solution of the translational equilibrium equations, with sufficient functional arbitrariness in
order to satisfy the boundary conditions (1.1), has the form

< 3—4 b
_If_= ,,2"1 [Bn ( = Y shknz — z ch knx) — D, sh kn:c] cos ky + 2; (C;yshhzy -+ Ajchh;y) sin Az; (1.2)
- 3 =

o<

u, .
+ =291 —22)y+ X

n={

3 —4v

(B,zshk,z + D, chk,z)sinkpy + 3 [c,- ( sh;y— yeh x,-y) — 4;sh x,y] cos Az,
=1

where v, Aj, C;, B, and D, are unknown coefficients; ky=(2n—1)n/2y,, and Aj=m:. We obtain the equations
for the stresses after substituting the motions (1.2) in the equations of state. We satisfy the boundary con-
ditions, as was done in {6], arriving at an infinite system of algebraic equations

2 = 1 —w 4va (t)
tnZn = Y3 L ; 1.
" gi [(’fﬁ“ﬁ)z ’f?.+*?]+ Yok, (13
N kf; | —wv
SYi= Z 3 ’
* nzl "[(kﬁﬂ?)“ K+ 4
where
- 1 ky .
tn————4—k;— mn+ cthkn M

Yo [3—4v Y
§; = =2 th Ay, — 22— 1.
4|73, Yo chzkjyo]

It has been proved {7, 8] that systems of the form (1.3) are entirely regular and that the principal parts of
the asymptotic expansions for x; and ¥j (for large n and j) can be represented in the form

b d

PSR V') (1.9
- w

where by, dy, and @ are constants, while & is a positive root of the transcendental equation
(3 — 4v) cos T—‘; =a?— (1 — 2v)%,
We note that the following inequality holds for @ when 0 =v=0,5:
0.5 < a < 1. (1.5)

If we establish the asymptotic behavior of the unknowns x, and ¥j and make the following substitution in
Egs. (1.3):
Yghq

M

x k%
In = Zap (n>p)hy;=
n

we will be able to noticeably improve the method of simple reduction. In contrast to the method of simple
reduction, the improved method of reduction will allow us to determine the values of all the unknowns xy
and y; by solving a system of p+q equations. The solution of the finite system will be significantly facili~
tated’if we are able to use the method of successive approximations, Modern computers allow us to easily
solve a system of several hundred equations by means of this method.

A complete analysis of the stress—strain state at any point of a body, including a corner, can be com-
pletely analyzed on the basis of the asymptotic equations (1.4), A detailed analysis of the behavior of the
stresses as a corner is approached, will be carried out only for the components o_, since the behavior of
the other components is analogously investigated, We have

. o 1<
oy =Jrsl =2(l=Vp—7 I (1=

n=1
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shk i \¢hk z !
X [ﬁk"—sﬂ'r’;i bl k (Gth Iun —_—-)‘—;lk ] €08 kny -+ — 2‘ ('—— 1) Yj
n n n

hkjy shA,

c y
X {[A,-yo thhy,+2(1 — g R, MY o A;y,,} cos AL (1.6}

Here J is an operator inverse to u*, u; is the instantaneous shear modulus, and
a(t)

b4 b b/
2(1 — W) yo — 5 2 “nl¥n

n=1

Yo =

The series in Eq. (1.6) rapidly converge within the region |x|<1, |y|<y, so that we obtain, as in the case
y =Yo,

cosl .z

O' ~ '\’oyo(l_") do i (— i) . (L.7)

Bearing in mind inequality (1.5), we see that reliable numerical values of the sums (1.7) can be obtained
only after we have improved the convergence of these series [9]. The use of well-known expansions [10]
results in a computational variant of Fq, (1.6) when y =y,

g { A%
o =2 =)o+ B 1|y - e Q> cos sz -+ YhiF (2),
-

7

where
T (M
Flo)= =2~ V?n + 2 = 1>’ l/rik_, Sy coshz.  (1.8)
29T @ oos T g0 r(a +-L cos’l‘."_ P 2 e cos 2%

The inequality

cosh
E (=1 xu+1

j=q,N

where € is the specified computational precision of the stresses, will serve as the criterion for selecting
q and N, In this case the boundary conditions (1.1) are satisfied with the same accuracy. As x—1, Egs.
(1.8) imply that

0;__) (1 — V) Yo¥odo (1 _ x)“~‘ . (1.9)
4T (a) cos %
2
The remaining stress tensor components behave in a similar way as a corner is approached, Thus, stresses
in the plate near the point separating the boundary conditions have the same singularity as inthe problem
for a quarter-plane [11]. The resulting solution is suitable for the analysis of plane-stress and plane-strain
states, with our notation.

§ 2. Thedissipationfunctionand energy equation are analogously determined [6] in the case of cyclic
loading aft) =a,cos wt. I weaverage the equations with respect to a cycle and adjoin to it the initial and
boundary conditions, we arrive at

a0 1
Fn = %AD _}—_G—f-)- D11 {2'1)

+h, (0 —0y) =0 when E=+;
‘”3 =5 2.2)
—a-i-ihz(e—eo)zo Wheﬂ n:iH,

where

A '
D;lzmM ~"(cx—‘-csy 4o -1~20
4”1

Y_og02).
1+v0 >’
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w=k/cp is thermal diffusivity, c is heat capacity, p is density, A is the thermal equivalent of mechanical
work, y is that part of the scattering energy that becomes thermal energy [12], h; is the heat-transfer co-
efficient, and 0'{’ are the stresses, equal to the elastic stresses when p =y,.

Equation (1.9) demonstrates that the dissipation function has z singularity at a corner of the form
Dy — Dyl(1 — 2)*+-(yo — y)? I~ when z—1, y— y,. (2.3)

We may prove that temperature is finite when hi+ h§¢0 at all points of the region by using methods from
potential theory and taking into account Eq, (1.5). Well-known numerical methods may be used to solved
the problem (2.1), (2.2). It is necessary to replace values of the function Dy by its mean integral value cal-
culated using Eq, (2.3) within a sufficiently small neighborhood of the corner. This "smoothing" of the
source function will not lead to significant error in most practical calculations. Such a solution may be
obtained by the solution superposition method [9].

The level of heating will be such that the temperature dependence of the physicomechanical proper-
ties can be disregarded within a sufficiently wide range of load parameters, Here the self-heating tempera-
ture field is determined by solving the linear system (2.1)»(2.2).

§ 3. Disregardinginthe energy equationthe dependence of the properties of the material on tempera~-
ture will not give a correct quantitative and qualitative description of vibrational heating in the case of in-
tensive loading. We thus assume that

l‘lz:l"ochlﬁ(e — 6p)1 (3.1)
for the solutions (2,1)-(2.2), arriving at the problem

Au+d f(z, y)O@)=0; (3.2)
gzi +Bju=0 when £=+1;

du
bjiBzu:O when y =+ y,,

where & is a given function, 8 and pg, are experimental constants, and

g2, y=2, u=pO—0y), By=Lhy, B,=Lh, (3.3)
2
OlgaagL2APY _ 1 02 , 02 , 02 02 v
}\,_—.—i]:’__, f(z,y)_m—g—(ox +oy 0, +20'xy'“1+v602)

are dimensionless variables. The boundary conditions (3.3) will be henceforth written in the more general
form

X FBh(@yu=0 on . (3.4)

The problem (3.2), (3.4) is also encountered in studying the temperature fields of viscous liquids, gases,
and gas mixtures [13], in the electrical heating of conductors and electrolytes [14], in calculating internal
heating of icebergs [15], and other fields.

Critical values A, of the parameter A above which no positive solutions of the nonlinear system (3.2),
(3.4) exist are of greatest interest, Critical values in a number of one-dimensional problems for actual
functions ® have been calculated [1, 2, 16, 17]. A survey of the mathematical aspects of this problem has
also been given [18]. In most studies it has been assumed that a trivial solution u, is known, which is equiv-
alent to ®(uy =0. This condition is not satisfied for heat sources operating in viscoelastic media,

We may prove that if the function u/®() is bounded,
7\4* < Xos (3-5)
where X, is the minimal eigenvalue of the associated linear problem

Avt-yf(z, yo=0 in V; 3.8)
= 4+ Bh(z,))p=0 on §.

126



f T
xSy Y/Yp=1
24,0
8
0,98
&
0,9
4 2 Y
o —
05 o7
] 079 \
z 3
o} 02 04 06 08 x
Fig. 1
£/10 LI
Y1Y0=!
1,5 ! olr Tylyy=0
? b
0'94 7’2-N
’ 0,37~
- R A 09— N0
’ : 0,197 06 AN
! 1 ! N ‘ —— \
Cop! ; 95 Ny
0,5 == ; \
O : 0333
—— ! N -
‘ 02 L 1 | | 0,9¢
0 0,4 0,8 x 0 2,2 04 06 08 x
Fig. 3 Fig. 4
F I e

220,366 A,=0,351

0,3

0,i5

Fig. 5

Under these consiraints an equation has been obtained [14] for the upper bounds A of Ax

A 5;: 3 .
N X"T;fow) (3.7

The Inequality (3.7) provides an extremely good approximation for Ax, particularly at low B. Nonetheless,
the method of obtaining this equation does not allow us to construct approximations of higher orders.

We will write Eq. (3.1) in the form
Au-+yfu=flyu — D)}

and solve the initial system by the method of successive approximations. As a resuit, we arrive at the
linear boundary-value problem

Aug+Xfue=0 in V; {3.8)
a
=2+ Bhu,=0 on §;
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Aun"l’Xfun:f[Xun—l - }‘n(D(u’n——l)] in ¥ (3.9)
P .
Zn | Bhuq=0 on 8.

The bounds (3.5) and (3.7) indicate the need for setting x =x,. The solution (3.8) is written in the form

uy=Cuy, (3.10)

where v, is the orthonormalized eigenfunction (3.8) corresponding to ¥ =Xg¢. We substitute Eq, (3.10) in
(3.9) for n=1, obtaining, from the existence condition for the solution of the problem,

A= %eC . (3.11)
O [ 1O (Cug) vodV
v :

Since C is an arbitrary constant, we easily prove that we may require, without loss of generality, that the
following conditions are satisfied:

{fuav, @V =0 m=1,2,...).

J
Then the solutions of the system (3.9) can be represented in the form

@

Uy :C”0+2 Pr— vy (aj :_'\ [Xo%o — Ao@ (u)] ”idV\) Sy
=1 %" v /
where ¥, and v; are the eigenvalues and eigenfunctioné of the problem, As a result the existence conditions

for the solutions of the problem (3.9) lead to the sequence

At = %o | ftn—100dV /(’ D (ttnt) 0ydV. 3.12)
v Vv

Ap(CH=A(C) as n—~eo,

Thus, the construction of the dependence A(C) reduces in each approximation to the calculation of quad-
ratures in Eqs. (3.11) and (3.12), A different choice of ¥ can be made if the ratio u/®(u) is unbounded, For
example, if there exists a number u,, such that ®u,) =0, it is necessary to replace x, by x; (=1, 2,...) in
the equations presented above, i.e., every eigenvalue of the problem (3.6) is a point of bifurcation of the sys-
tem (3.2), (3.4). In analyzing the dependence A(C), we are able to determine the critical values Ax and in-
vestigate the behavior of a bifurcation of the solutions of the nonlinear problem, The eigenvalues and eigen-
functions of the linear function can be found on the basis of well-known methods [9].

§ 4. Anumerical calculation was carriedout for 1.=0.05 m, y,=0.88, and v=0,5. The infinite system
was held to 100 unknowns x, and y;. In using the method of successive approximations, the first six signs
of the unknowns were intercha_nged after 10-12 iterations. The resulting solution satisfied the boundary
conditions to four significant digits. The convergence of the series was improved using the Krylov method
[9] for calculating stresses on boundary surfaces.

Figures 1 and 2 depict the distributions of the normal and tangential stresses to the plate., We may
see that a nearly homogeneous stressed state occurs only in the central part of the body. The singularity
results in a sharp increase in stresses as the corner is approached, The dissipation function behaves anal-
ogously in this region. Valuesof f calculated using Eq. (3.3) are depicted in Fig. 3. In order to determine
the temperature the problem {2,1), (2.2) was solved by the method of finite differences with variable pitch
for h; =40 m~! and h,=5240 m~!, With these remarks in mind, the mean integral value of f was calculated
in an angular grid 0.02L -0.02Ly, using Eq. (2.3). Figure 4 depictsa stationary temperature field cal-
culated to within the factor r=w p,y a}L2A/,

Under these conditions the influence of a-fringe effect on temperature is not practically exerted and
temperature reaches a maximum at the central point of approach. The eigenvalues and eigenfunctions x.
and v. of the linear problem (3.6) were determined by the Bubnov method in the course of studying thermal
instability. The approximate solutions are represented in the form

0§ =X X bppncos Anzcos kny, 4.1)

n=1 m=1
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where Ay, andkyare roots of transcendental equations obtained from the boundary conditions (3.2). The

function f(x, y) was pointwise approximated using the method of least squares with sums of the form (4,1).
As a result, we obtained the following approximations xgs of X xéﬂ =1,0095, xo(z) =0,99605, and ¥, =
0.99557, which gives us grounds for setting x,=0,9956.

For a broad class of viscoelastic materials [17], () =exp(w) in Eq. (3.1). The curve for A{C) obtained
for this dependence is depicted in Fig, 5. Curves 1 and 2 were obtained using Egs, (3.7) and (3,11}, re~
spectively. Both equations satisfactorily agree in maxima of A and significantly diverge in the amplitudes
of C. The dependence A(C) is a branching equation for the nonlinear problem (3,2), (3.3) and demonstrates
that there exist two solutions when A <Ax, one solution when A =Ax, and no solution when A >Ax . When
A >Ax the temperature growth is unbounded (thermal explosion).
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